Name:

Unit 9 Glossary Review

Right Triangles – 3 Ways to solve for a missing side:

Pythagorean Converse: *if c is the hypotenuse and a* & *b are the legs of a right* Δ *, then:*

- 3. If $a^2 + b^2 > c^2$, then $\triangle ABC$ is a ______ triangle.

Special Right Triangles:

(Label the sides and angles in these pictures)

Right Triangle – Trigonometry

ĸ	The Sine Ratio:	The Cosine Ratio:	The Tangent Ratio:
opp hyp adj	$\sin(A) =$ ———	$\cos(A) =$ ———	$\tan(A) =$ ———

Trigonometry - Finding Angle Measure

	Using Sine Ratio:	Using Cosine Ratio:	Using Tangent Ratio:
opp	$m \angle A =$	$m \angle A =$	$m \angle A =$
adj			

*If $\sin(A) = \cos(B)$ then what is the relationship between $\angle A$ and $\angle B$?

*Always check that your calculator is in DEGREE mode.

If $\sin(30) = 0.5$ on your calculator then you are in DEGREE mode.