\qquad

Unit 9 Glossary Review

Right Triangles - 3 Ways to solve for a missing side:

Pythagorean Theorem:	Altitude Rule:	Leg Rule:
Picture:	Picture:	Picture:

Pythagorean Converse: if c is the hypotenuse and $a \& b$ are the legs of a right Δ, then:

1. If $a^{2}+b^{2}<c^{2}$, then $\triangle A B C$ is a \qquad triangle.
2. If $a^{2}+b^{2}=c^{2}$, then $\triangle A B C$ is a \qquad triangle.
3. If $a^{2}+b^{2}>c^{2}$, then $\triangle A B C$ is a \qquad triangle.

Special Right Triangles:

(Label the sides and angles in these pictures)
$45-45-90$ = Half of $a \ldots \quad 30-60-90$ = half of $a \ldots$

Right Triangle - Trigonometry

The Sine Ratio:	The Cosine Ratio:	The Tangent Ratio:	
opp	$\sin (A)=\square$	$\cos (A)=-$	$\tan (A)=-$

Trigonometry - Finding Angle Measure

| Using Sine Ratio: | Using Cosine Ratio: | Using Tangent Ratio: |
| :--- | :--- | :--- | :--- |
| madj | $m \angle A=$ | $m \angle A=$ |

*If $\sin (A)=\cos (B)$ then what is the relationship between $\angle A$ and $\angle B$?
*Always check that your calculator is in DEGREE mode. If $\sin (30)=0.5$ on your calculator then you are in DEGREE mode.

